

Beam conditioning optics

Elliptically or parabolically bent multilayer reflectors can monochromatise a divergent X-ray and focus respectively collimate (parallelise) it at the same time. Thus a small line source can be reproduced as a line or collimated in a parallel beam with a rectangular cross section.

Typical dimensions:

Typical length:	$40-150 \mathrm{~mm}$
Typical width:	$5-10 \mathrm{~mm}$
Typical heigth of a 2D-optic:	10 mm
Typical dimensions (adjustment unit included):	$7 \times 20 \times 20 \mathrm{~cm}^{3}$

Typical parameters:

Spectral lines:	$\mathrm{Cr}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Ga}, \mathrm{Mo}, \mathrm{Ag}$
Typical peak reflectivity:	R $>70 \%$ (depending on angle and energy)
Monochromaticity:	$K \alpha 1+K \alpha 2$ or $\mathrm{K} \beta$
Divergency (parabolic optic):typically $\Delta \Phi<0.03^{\circ}$	
	(with a generator of $40 \mu \mathrm{~m}$)
Typical parallel beam width:	1.0 mm ($\mathrm{Mo}-\mathrm{K}, \mathrm{L}=100 \mathrm{~mm}$)
	1.5 mm ($\mathrm{Cu}-\mathrm{K}, \mathrm{L}=60 \mathrm{~mm}$)
Typical focus dimension:	< $30 \mu \mathrm{~m}$... $500 \mu \mathrm{~m}$
Typical focal distance:	$60-100 \mathrm{~mm}$ (focal point/focus to reflection centre)
Focal distance relation:	f1:f2 ~ 1:1 .. 1:5 (elliptic reflector)
	others on request

2-dimensional beam conditioning optics:

Two bent optics at right angles to one another (ASTIX geometry) make it possible to focus a dimple spring in one point (ASTIX-f) or to collimate it to a beam with a square cross section (ASTIX-c). A hybrid optic allows for a combination between focusing in one direction and collimating in the other (ASTIX-h).

Vacuum housing of a 2-dimensional ASTIX-optic:

[Translate to English:] Foto von ASTIX-Vakuumgehäusen mit Justiereinrichtung.

1-dimensional parabolic optic:

[Translate to English:] Funktionsprinzip einer Paraboloptik.

An optic which is bent parabolically in one dimension collimates a divergent beam of a dimple spring or a line source in a rectangular parallel beam or conversely focuses a parallel beam in one point.

1-dimensional elliptic optic:

[Translate to English:] Funktionsprinzip einer elliptischen Optik.

An optic which is bent elliptically in one dimension focuses the beam of
a divergent dimple spring or line source in a line. The distances between source, reflector and focus can be set user-defined and cause a variable magnification or diminution of the focus.

2-dimensional elliptic optic:

[Translate to English:] Funktionsprinzip einer 2-dimensionalen elliptischen Optik.

Two elliptic optics which are at right angles to one another focus the divergent beam of a dimple spring in one point (ASTIX-f). Its dimension can be regulated by choosing the distance between source, reflector and focus. Typical diameters are in the range of $<30 \mu \mathrm{~m}$ and $500 \mu \mathrm{~m}$.

2-dimensional parabolic optic:

[Translate to English:] Funktionsprinzip einer 2-dimensionalen Paraboloptik.

Two parabolic optics which are at right angles to one another (ASTIX-c) collimate the divergent beam of a dimple spring to a parallel beam with square cross section (typical lateral length: $1.0-2.2 \mathrm{~mm}$) or focus a parallel beam in one point.

